Contents

Contributors xi
Preface xiv
Acknowledgments xvi

1 The Role of Aquaculture 3
James H. Tidwell and Geoff Allan
1.1 Seafood demand 3
1.2 Seafood supply 4
1.3 Seafood trade 6
1.4 Status of aquaculture 7
1.5 Production systems 12
1.6 The future and the challenge 13
1.7 References 13

2 History of Aquaculture 15
Robert R. Stickney and Granvil D. Treece
2.1 Beginnings of aquaculture 16
2.2 Expansion prior to the mid-1800s 17
2.3 The explosion of hatcheries 18
2.4 Art becomes science 20
2.5 Commercial finfish species development 23
2.6 Shrimp culture 33
2.7 Mollusk culture 42
2.8 Controversy 43
2.9 References 44
3 Functions and Characteristics of All Aquaculture Systems 51
James H. Tidwell

3.1 Differences in aquatic and terrestrial livestock 51
3.2 Ecological services provided by aquaculture production systems 53
3.3 Diversity of aquaculture animals 53
3.4 Temperature classifications of aquacultured animals 54
3.5 Temperature control in aquaculture systems 56
3.6 Providing oxygen in aquaculture systems 58
3.7 Waste control in aquaculture systems 59
3.8 Aquaculture systems as providers of natural foods 61
3.9 References 62

4 Characterization and Categories of Aquaculture Production Systems 64
James H. Tidwell

4.1 Open systems 65
4.2 Semi-closed systems 68
4.3 Closed systems 73
4.4 Hybrid systems 75
4.5 References 77

5 Shellfish Aquaculture 79
Robert Rheault

5.1 Major species in culture (oysters, clams, scallops, mussels) 80
5.2 History 81
5.3 Biology 84
5.4 Culture basics 86
5.5 Extensive versus intensive culture 88
5.6 Spat collection: hatchery, nursery, growout 89
5.7 Cultured algae 91
5.8 Spawning 92
5.9 Larval development 93
5.10 Setting 94
5.11 Nursery and growout scale considerations 96
5.12 Nursery methods 97
5.13 Growout methods 100
5.14 Fouling 104
5.15 Fouling control strategies 104
5.16 Predation 105
5.17 Harvest 106
5.18 Food safety 107
5.19 Shellfish diseases 108
5.20 Disease management options 108
5.21 Genetics: selective breeding 109
5.22 Triploidy 110
5.23 Harmful algal blooms 110
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.24</td>
<td>Site selection</td>
<td>111</td>
</tr>
<tr>
<td>5.25</td>
<td>Carrying capacity</td>
<td>112</td>
</tr>
<tr>
<td>5.26</td>
<td>Permitting challenges</td>
<td>113</td>
</tr>
<tr>
<td>5.27</td>
<td>Nonnative species</td>
<td>114</td>
</tr>
<tr>
<td>5.28</td>
<td>References</td>
<td>115</td>
</tr>
<tr>
<td>6</td>
<td>Cage Culture in Freshwater and Protected Marine Areas</td>
<td>119</td>
</tr>
<tr>
<td>6.1</td>
<td>Current status of cage culture</td>
<td>121</td>
</tr>
<tr>
<td>6.2</td>
<td>History and evolution of cage culture</td>
<td>122</td>
</tr>
<tr>
<td>6.3</td>
<td>Advantages and disadvantages of cages</td>
<td>123</td>
</tr>
<tr>
<td>6.4</td>
<td>Site selection</td>
<td>124</td>
</tr>
<tr>
<td>6.5</td>
<td>Stocking cages</td>
<td>125</td>
</tr>
<tr>
<td>6.6</td>
<td>Feeding caged fish</td>
<td>126</td>
</tr>
<tr>
<td>6.7</td>
<td>Polyculture and integrated systems</td>
<td>126</td>
</tr>
<tr>
<td>6.8</td>
<td>Problems with cage culture</td>
<td>127</td>
</tr>
<tr>
<td>6.9</td>
<td>Economics of cage culture</td>
<td>129</td>
</tr>
<tr>
<td>6.10</td>
<td>Sustainability issues</td>
<td>129</td>
</tr>
<tr>
<td>6.11</td>
<td>References</td>
<td>130</td>
</tr>
<tr>
<td>7</td>
<td>Ocean Cage Culture</td>
<td>135</td>
</tr>
<tr>
<td>7.1</td>
<td>The context for open ocean farming</td>
<td>135</td>
</tr>
<tr>
<td>7.2</td>
<td>Characterization and selection of open ocean sites</td>
<td>137</td>
</tr>
<tr>
<td>7.3</td>
<td>Technologies for open ocean farming</td>
<td>139</td>
</tr>
<tr>
<td>7.4</td>
<td>Finfish species cultivated in open ocean cages</td>
<td>148</td>
</tr>
<tr>
<td>7.5</td>
<td>Environmental considerations</td>
<td>149</td>
</tr>
<tr>
<td>7.6</td>
<td>Future prospects and challenges</td>
<td>153</td>
</tr>
<tr>
<td>7.7</td>
<td>References</td>
<td>154</td>
</tr>
<tr>
<td>8</td>
<td>Reservoir Ranching</td>
<td>158</td>
</tr>
<tr>
<td>8.1</td>
<td>Reservoir ranching vs. culture-based fisheries</td>
<td>158</td>
</tr>
<tr>
<td>8.2</td>
<td>Reservoir</td>
<td>159</td>
</tr>
<tr>
<td>8.3</td>
<td>Natural processes of reservoirs</td>
<td>160</td>
</tr>
<tr>
<td>8.4</td>
<td>Selection of reservoirs for reservoir ranching</td>
<td>162</td>
</tr>
<tr>
<td>8.5</td>
<td>Fish species selection</td>
<td>164</td>
</tr>
<tr>
<td>8.6</td>
<td>Stocking density and size</td>
<td>165</td>
</tr>
<tr>
<td>8.7</td>
<td>Status of reservoir ranching around the world</td>
<td>166</td>
</tr>
<tr>
<td>8.8</td>
<td>Summary</td>
<td>170</td>
</tr>
<tr>
<td>8.9</td>
<td>References</td>
<td>171</td>
</tr>
<tr>
<td>9</td>
<td>Flow-through Raceways</td>
<td>173</td>
</tr>
<tr>
<td>9.1</td>
<td>Types of raceways</td>
<td>174</td>
</tr>
<tr>
<td>9.2</td>
<td>Physical requirements</td>
<td>177</td>
</tr>
<tr>
<td>9.3</td>
<td>Water requirements</td>
<td>179</td>
</tr>
</tbody>
</table>
9.4 Carrying capacity 180
9.5 Water consumption and waste management 183
9.6 Feeding and inventory management 186
9.7 Summary 187
9.8 References 189

10 Ponds 191
Craig Tucker and John Hargreaves
10.1 Species cultured 193
10.2 Pond types 195
10.3 Water use 198
10.4 Pond culture intensity and ecological services 201
10.5 Food in pond aquaculture 202
10.6 Life support in pond aquaculture 208
10.7 Land use and the ecological footprint of pond aquaculture 222
10.8 Consequences of unregulated algal growth 227
10.9 Practical constraints on pond aquaculture production 230
10.10 Comparative economics of culture systems 234
10.11 Sustainability issues 237
10.12 Trends and research needs 240
10.13 References 242

11 Recirculating Aquaculture Systems 245
James M. Ebeling and Michael B. Timmons
11.1 Positive attributes 246
11.2 Overview of system engineering 247
11.3 Culture tanks 249
11.4 Waste solids removal 250
11.5 Cornell dual-drain system 250
11.6 Settling basins and tanks 252
11.7 Mechanical filters 252
11.8 Granular media filters 253
11.9 Disposal of the solids 254
11.10 Biofiltration 254
11.11 Choice of biofilter 258
11.12 Aeration and oxygenation 259
11.13 Carbon dioxide removal 261
11.14 Monitoring and control 262
11.15 Current system engineering design 262
11.16 Recirculation system design 263
11.17 Four major water-treatment variables 265
11.18 Summary of four production terms 268
11.19 Stocking density 270
11.20 Engineering design example 270
11.21 Conclusion 276
11.22 References 277
12 Biofloc-based Aquaculture Systems
Craig L. Browdy, Andrew J. Ray, John W. Leffler, and Yoram Avnimelech

12.1 Bioflocs
12.2 Oxygen dynamics
12.3 Resuspension, mixing, and sludge management
12.4 Nitrogenous waste products
12.5 Temperature
12.6 Feeds and feeding
12.7 Economics
12.8 Sustainability
12.9 Outlook and research needs
12.10 Acknowledgment
12.11 References

13 Partitioned Aquaculture Systems
D. E. Brune, Craig Tucker, Mike Massingill, and Jesse Chappell

13.1 High rate ponds in aquaculture—the partitioned aquaculture system
13.2 PAS fingerling production
13.3 Flow-through PAS: the controlled eutrophication process
13.4 Photoautotrophic and chemoautotrophic PAS for marine shrimp production
13.5 Alabama in-pond raceway system
13.6 Mississippi split-pond aquaculture system
13.7 California pondway system
13.8 References

14 Aquaponics—Integrating Fish and Plant Culture
James E. Rakocy

14.1 System design
14.2 Fish production
14.3 Solids
14.4 Biofiltration
14.5 Hydroponic subsystems
14.6 Sump
14.7 Construction materials
14.8 Component ratios
14.9 Plant growth requirements
14.10 Nutrient dynamics
14.11 Vegetable selection
14.12 Crop production systems
14.13 Pest and disease control
14.14 Approaches to system design
14.15 Economics
14.16 Prospects for the future 382
14.17 References 383

15 In-pond Raceways 387
 Michael P. Masser
 15.1 Development of the in-pond raceway 388
 15.2 Stocking and feeding 390
 15.3 Backup systems and disease treatments 391
 15.4 Comparison to other culture systems 391
 15.5 Sustainability issues 393
 15.6 Future trends 393
 15.7 References 393

16 On the Drawing Board 395
 James H. Tidwell
 16.1 Future trends 395
 16.2 References 412

Index 415